Edit page

Fórmula de Abel e do Quociente

Método das Pontas

k=1n1(k2)(k1)(k+1)(k+2)(k+3)\sum_{k=1}^{n-1}\frac{(k-2)(k-1)}{(k+1)(k+2)(k+3)}

De início não parece ser possível haver uma resolução direta devido ao que se tem no numerador. Em exercícios deste tipo usa-se o que se chama o método das pontas, que consiste em eliminar os fatores mais exteriores do denominador. Por exemplo:

(k2)(k1)=k23k+2(k-2)(k-1)=k^2-3k+2

Queremos transformar isto nalgo que tenha fatores, por exemplo, (k+3)(k+3) (poderia ser k+1k+1). Aplica-se então o método de Horner/Ruffini a este polinómio, dividindo por (k+3)(k+2)(k+3)(k+2):

132 331816202218\begin{array}{ c | c c c c c c } & \\ & 1 & -3 & 2 \\ &\\ \ -3 & & -3 & 18 \\ \hline &\\ & 1 & -6 & \smartcolor{orange}{20} \\ &\\ -2 & & -2 & \\ \hline &\\ & 1 & \smartcolor{orange}{-8} \\ \end{array}

O laranja é o Resto da Divisão.

1(k+3)(k+2)8(k+3)+20\longrightarrow 1\cdot(k+3)(k+2)\smartcolor{orange}{-8}(k+3)\smartcolor{orange}{+20}

e o somatório original vem como:

k=1n1(k+3)(k+2)(k+1)(k+2)(k+3)8k=1n1(k+3)(k+1)(k+2)(k+3)+20k=1n11(k+1)(k+2)(k+3)=k=1n1ΔHk+[8k+110(k+1)(k+2)]1n=Hn1+8n+1410(n+1)(n+2)+53\sum_{k=1}^{n-1}\frac{(k+3)(k+2)}{(k+1)(k+2)(k+3)} -\\ 8\sum_{k=1}^{n-1}\frac{(k+3)}{(k+1)(k+2)(k+3)}+\\20\sum_{k=1}^{n-1}\frac{1}{(k+1)(k+2)(k+3)} =\\ \sum_{k=1}^{n-1}\Delta H_k + \left[\frac{8}{k+1}-\frac{10}{(k+1)(k+2)}\right]_1^n = \\ H_n-1+\frac{8}{n+1}-4-\frac{10}{(n+1)(n+2)} + \frac 5 3

Fórmula de Abel

Pretende-se estudar a diferença finita de expressões do tipo unvnu_n v_n:

tem-se:

Δ(unvn)=un+1vn+1unvn=un+1vn+1+unvn+1unvn+1unvn=vn+1(un+1un)+un(vn+1vn)=vn+1Δun+unΔvnunΔvn=Δ(unvn)vn+1Δun\Delta(u_nv_n)=u_{n+1}v_{n+1}-u_nv_n =\\ u_{n+1}v_{n+1} + \underline{u_nv_{n+1} -u_nv_{n+1}} - u_nv_n = \\ v_{n+1}(u_{n+1}-u_n)+u_n(v_{n+1}-v_n) = \\ v_{n+1}\Delta u_n + u_n\Delta v_n \longrightarrow \\ \\ \huge{u_n\Delta v_n = \Delta(u_nv_n) - v_{n+1}\Delta u_n}

Pelo que se pode aplicar facilmente:

k=0n-1ukΔvk=[ukvk]0nk=0n1vk+1Δuk\sum_{k=0}^{\textbf{n-1}}u_k\Delta v_k = [u_kv_k]_0^\textbf{n} - \sum_{k=0}^{n-1}v_{k+1}\Delta u_k

Exemplo:

k=0n1kHk=k=0n1HkΔk22=[k22Hk]0nk=0n1(k(k+1)21k+1)\sum_{k=0}^{n-1}kH_k = \sum_{k=0}^{n-1}H_k\Delta\frac{k^{\underline{2}}}{2} = \left[\frac{k^{\underline{2}}}{2}H_k\right]_0^n - \sum_{k=0}^{n-1}\left(\frac{k(k+1)}2\cdot\frac{1}{k+1}\right)

Diferença Finita do Quociente

Δunvn=un+1vn+1unvn=un+1vn+unvnunvnunvn+1vnvn+1=(Δun)vnunΔvnvnvn+1\Delta \frac{u_n}{v_n} = \frac{u_{n+1}}{v_{n+1}} - \frac{u_n}{v_n} = \\ \frac{u_{n+1}v_n+\underline{u_nv_n-u_nv_n} -u_nv_{n+1}}{v_nv_{n+1}} = \\ \huge\frac{(\Delta u_n)v_n -u_n\Delta v_n}{v_nv_{n+1}}
Exemplos
k=0n1k2k(k+1)(k+2)=?\sum_{k=0}^{n-1}\frac{k2^k}{(k+1)(k+2)} = \quad ?

Repare-se:

Δ2kk+1=2k(k+1)2k(1)(k+1)(k+2)=k2k(k+1)(k+2)\Delta\frac{2^k}{k+1} = \frac{2^k(k+1)-2^k(1)}{(k+1)(k+2)}=\frac{k2^k}{(k+1)(k+2)}

logo:

k=0n1k2k(k+1)(k+2)=k=0n1Δ2kk+1=[2kk+1]0n=2nn+11\sum_{k=0}^{n-1}\frac{k2^k}{(k+1)(k+2)} = \sum_{k=0}^{n-1}\Delta\frac{2^k}{k+1} = \left[\frac{2^k}{k+1}\right]_0^n =\frac{2^{n}}{n+1} -1

k=0n1k2k(k+2)!=?\sum_{k=0}^{n-1}\frac{k2^k}{(k+2)!} = \quad ?

Repara-se:

Δ2k(k+1)!=2k(k+1)!2k(k+1)(k+1)!(k+1)!(k+2)!==2k2k(k+1)(k+2)!=2k(1k1)(k+2)!=k2k(k+2)!\Delta \frac{2^{k}}{(k+1)!} =\frac{2^{k} (k+1)!-2^{k} (k+1)(k+1)!}{(k+1)!(k+2)!} =\\ =\frac{2^{k} -2^{k} (k+1)}{(k+2)!} =\frac{2^{k} (1-k-1)}{(k+2)!} =-\frac{k2^{k}}{(k+2)!}

k=0n12k12k1=?\sum_{k=0}^{n-1}\frac{2k-1}{2^{k-1}} = \quad ?

Repara-se:

Δak+b2k1=a2k1(ak+b)2k12k12k=a(ak+b)2k=a2k+ab22k1\Delta\frac{ak+b}{2^{k-1}} = \frac{a2^{k-1}-(ak+b)2^{k-1}}{2^{k-1}2^{k}}= \frac{a-(ak+b)}{2^{k}} = \frac{-\frac a 2k+\frac{a-b} 2}{2^{k-1}}
{a2=2ab2=1{a=4b=2\begin{dcases}-\frac a 2 = 2\\\frac{a-b} 2 = -1\end{dcases} \Leftrightarrow \begin{dcases}a=4\\b = -2\end{dcases}

logo

Δ4k22k1=2k12k1\Delta \frac{-4k-2}{2^{k-1}} = \frac{2k-1}{2^{k-1}}