Edit page

Série Harmónica

Se tivermos acesso às respetivas tabelas dos números de Stirling, é possível encurtar bastante um problema como descobrir a soma fechada para k=0n1k3\sum_{k=0}^{n-1}k^3:

k=0n1k3=k=0n1({30}k0+{31}k1+{32}k2+{33}k3)=k=0n1(0k0+1k1+3k2+1k3)\sum_{k=0}^{n-1}k^3 =\\ \sum_{k=0}^{n-1}\left(\begin{Bmatrix}3\\0\end{Bmatrix}k^{\underline0} + \begin{Bmatrix}3\\1\end{Bmatrix}k^{\underline1} + \begin{Bmatrix}3\\2\end{Bmatrix}k^{\underline2} + \begin{Bmatrix}3\\3\end{Bmatrix}k^{\underline3}\right) =\\\sum_{k=0}^{n-1}\left(0k^{\underline0} + 1k^{\underline1} + 3k^{\underline2} + 1k^{\underline3}\right)

Que dá:

[12k2+k3+14k4]0n\left[\frac{1}{2}k^{\underline2} + k^{\underline3}+\frac{1}{4}k^{\underline4}\right]_0^{n}

Agora, recorrendo à tabela:

k0k1k2k3k4k220121200k302310k440321143214\begin{array}{ c | c c c c c c c } & \\ & k^{0} & k^{1} & k^{2} & k^{3} & k^{4}\\ \hline &\\ \frac{k^{\underline{2}}}{2} & 0 & -\frac{1}{2} & \frac{1}{2} & 0 & 0 \\ &\\ k^{\underline{3}} & 0 & 2 & -3 & 1 & 0 \\ &\\ \frac{k^{\underline{4}}}{4} & 0 & -\frac{3}{2} & \frac{11}{4} & -\frac{3}{2} & \frac{1}{4} \\ \end{array}

tem-se, então:

k=0n1k3=[14k212k3+14k4]0n=14n212n3+14n4=(n(n1)2)2=(k=0n1k)2\sum_{k=0}^{n-1}k^3 = \left[\frac{1}{4}k^2 - \frac{1}{2}k^3+\frac{1}{4}k^4\right]_0^n =\frac{1}{4}n^2 - \frac{1}{2}n^3+\frac{1}{4}n^4 =\\ \left(\frac{n(n-1)}{2}\right)^2 = \left(\sum_{k=0}^{n-1}k\right)^2

Revisões sobre o Triângulo de Pascal

111121133114641151010511615201561\begin{array}{ c c c c c c c } 1 & & & & & & \\ 1 & 1 & & & & & \\ 1 & 2 & 1 & & & & \\ 1 & \smartcolor{orange} 3 & \smartcolor{orange}3 & 1 & & & \\ 1 & 4 & \smartcolor{orange}6 & 4 & 1 & & \\ 1 & 5 & 10 & 10 & 5 & 1 & \\ 1 & 6 & 15 & 20 & 15 & 6 & 1 \end{array}\\
nN(n0)=1\forall_{n \in \mathbb N} {n \choose 0} = 1
nN((i>n)    (ni)=0))\forall_{n \in \mathbb N} \left( (i > n) \implies {n \choose i} = 0) \right)
nNiN((0<in)    (ni)=(n1i1)+(n1i))\forall_{n \in \mathbb N} \forall_{i \in \mathbb N} \left( ( 0 < i \leq n) \implies {n \choose i} = {n-1 \choose i-1} + {n-1 \choose i}\right)

e, claro:

(ni)=n!(ni)! i!{n \choose i} = \frac{n!}{(n-i)!\ i!}

Propriedades dos Números de Stirling de 1ª Espécie

012345k0k1k2k3k4k50k01000001k10100002k20110003k30231004k406116105k50245035101\begin{array}{ c c c c c c c c } & & 0 & 1 & 2 & 3 & 4 & 5\\ & & k^{0} & k^{1} & k^{2} & k^{3} & k^{4} & k^{5}\\ 0 & k^{\underline{0}} & 1 & 0 & 0 & 0 & 0 & 0\\ 1 & k^{\underline{1}} & 0 & 1 & 0 & 0 & 0 & 0\\ 2 & k^{\underline{2}} & 0 & -1 & 1 & 0 & 0 & 0\\ 3 & k^{\underline{3}} & 0 & 2 & -3 & 1 & 0 & 0\\ \smartcolor{orange} 4 & k^{\underline{4}} & 0 & -6 & \smartcolor{orange} {11} & \smartcolor{orange} {-6} & 1 & 0\\ 5 & k^{\underline{5}} & 0 & 24 & -50 & \smartcolor{orange} {35} & -10 & 1 \end{array}

Propriedades

nN[n0]=(n==0)\forall_{n \in \mathbb N} \begin{bmatrix} n \\ 0\end{bmatrix} = (n == 0)
nN((i>n)    [ni]=0)\forall_{n \in \mathbb N} \left( (i > n) \implies \begin{bmatrix} n \\ i\end{bmatrix} = 0 \right)
nNiN((0<in)    [ni]=[n1i1](n1)[n1i])\forall_{n \in \mathbb N} \forall_{i \in \mathbb N} \left( ( 0 < i \leq n) \implies \begin{bmatrix} n \\ i\end{bmatrix} = \begin{bmatrix} n-1 \\ i-1\end{bmatrix} - (n-1)\begin{bmatrix} n-1 \\ i\end{bmatrix}\right)

Propriedades dos Números de Stirling de 2ª Espécie

0123456k0k1k2k3k4k5k60k010000001k101000002k201100003k301310004k401761005k501152510106k601319065151\begin{array}{ c c c c c c c c } & & 0 & 1 & 2 & \smartcolor{orange} 3 & 4 & 5 & 6\\ & & k^{\underline{0}} & k^{\underline{1}} & k^{\underline{2}} & k^{\underline{3}} & k^{\underline{4}} & k^{\underline{5}} & k^{\underline{6}}\\ 0 & k^{0} & 1 & 0 & 0 & 0 & 0 & 0 & 0\\ 1 & k^{1} & 0 & 1 & 0 & 0 & 0 & 0 & 0\\ 2 & k^{2} & 0 & 1 & 1 & 0 & 0 & 0 & 0\\ 3 & k^{3} & 0 & 1 & 3 & 1 & 0 & 0 & 0\\ 4 & k^{4} & 0 & 1 & 7 & 6 & 1 & 0 & 0\\ 5 & k^{5} & 0 & 1 & \smartcolor{orange} {15} & \smartcolor{orange}{25} & 10 & 1 & 0\\ 6 & k^{6} & 0 & 1 & 31 & \smartcolor{orange}{90} & 65 & 15 & 1 \end{array}

Propriedades

nN{n0}=(n==0)\forall_{n \in \mathbb N} \begin{Bmatrix} n \\ 0\end{Bmatrix} = (n == 0)
nN((i>n)    {ni}=0))\forall_{n \in \mathbb N} \left( (i > n) \implies \begin{Bmatrix} n \\ i\end{Bmatrix} = 0) \right)
nNiN((0<in)    {ni}={n1i1}+i{n1i})\forall_{n \in \mathbb N} \forall_{i \in \mathbb N} \left( ( 0 < i \leq n) \implies \begin{Bmatrix} n \\ i\end{Bmatrix} = \begin{Bmatrix} n-1 \\ i-1\end{Bmatrix} +i\begin{Bmatrix} n-1 \\ i\end{Bmatrix}\right)

A Série Harmónica

Gráfico de 1x\frac{1}{x}:

Integral com 1/x

Sendo Hn=k=1n1kH_n = \sum_{k=1}^{n}\frac{1}{k}, tem-se:

Hn1<ln(n)<HnH_n - 1 <ln(n) <H_n

e

Hn={ 0sen=0k=1n1ksen>0H_n = \begin{cases}\ 0\quad se\quad n=0 \\ \sum_{k=1}^n\frac{1}{k}\quad se\quad n>0\end{cases}

cuja derivada ou diferença finita é:

ΔHn=Hn+1Hn=Hn+1n+1Hn=1n+1=n1\Delta H_n = H_{n+1}-H_n = H_n+\frac 1 {n+1} - H_n = \frac 1 {n+1} = n^{\underline{-1}}

Assim, é possível agora calcular o seguinte tipo de somas fechadas:

k=0n1k1=k=0n1ΔHk=[Hk]0n=Hn\sum_{k=0}^{n-1}k^{\underline{-1}} = \sum_{k=0}^{n-1}\Delta H_k = \left[H_k\right]_0^n = H_n

Outros resultados:

k=0n1Hk=Δ(kHk)=(k+1)Hk+1kHk=(k+1)(Hk+1k+1)kHk=(k+1)Hk+1kHk=Hk+1Hk=Δ(kHk)1\sum_{k=0}^{n-1}H_k= \\ \Delta (kH_k) =(k+1)H_{k+1} -kH_k = \\ (k+1)(H_k + \frac 1 {k+1}) -kH_k = \\ (k+1)H_k +1 -kH_k = \\ H_k +1 \\ \Leftrightarrow H_k = \Delta (kH_k)-1

ou seja:

k=0n1Hk=nHnn\sum_{k=0}^{n-1}H_k = nH_n - n

Se quiséssemos calcular k=0n1kHk\displaystyle \sum_{k=0}^{n-1}kH_k, teríamos que encontrar a diferença finita da sucessão k22Hk\frac{k^{\underline2}}{2} H_k:

Δ(k22Hk)=12k(k+1)Hk+112k(k1)Hk=12k(k+1)(Hk+1k+1)12k(k1)Hk=12kHk(k+1(k1))+12k=kHk+12kkHk=Δ(k22Hk)12k\Delta \left(\frac{k^{\underline{2}}}{2}H_k\right) = \frac 1 2 k(k+1)H_{k+1} - \frac 1 2k(k-1)H_k \\ = \frac 1 2k(k+1)\left(H_k + \frac 1 {k+1}\right) - \frac 1 2k(k-1)H_k \\ =\frac 1 2kH_k(k+1-(k-1)) + \frac 1 2k \\ = kH_k + \frac 1 2 k \\ \Leftrightarrow kH_k = \Delta\left(\frac{k^{\underline2}}{2}H_k\right)-\frac 1 2k

Chegou-se assim, a uma fórmula parecida à da primitivação por partes.